
2

The interfaced proposed here illustrates the use of
dominance relations and may also clarify the
concept and stimulate its being incorporated in
CAD programs. There are always many possible
interfaces to deal with a certain design aspect. In
this case we have tried to conceive of a simple
formula to be used in conjunction with visual
object representation on the screen. The interface
is bi-directional in that changes in a relationship
between objects show in the formula bar, while
changes in the latter activate changes in the visual
representation. Where terminology is needed we
have tried to keep it as close as possible to the
practitioner’s experience, avoiding unnecessary
mathematical vocabulary.

2. AN INTERFACE CONVENTION.

2.1 Relations between objects

Given two objects in space, as shown in an on-
screen design, a Distance Vector can be drawn
from one object to the other. If drawn from A to
B, it tells us about a relation of A relative to B.
Many different Vectors can be drawn from A to B
each giving another relational aspect. The length
of a vector will be calculated by the computer and
may be seen next to it on the screen:

Figure 1, Relation of A towards B.

Once a vector is drawn, a formula will appear in a
formula bar:

A, B = 25 1)

If we change the Vector value to say, 20, object A
will translate along the Vector towards B over a
distance of 5. The Vector value can be changed in
the formula as well as in the design. If we displace
one of the objects, the vector and the formula will
adjust. If we draw another Vector between A and
B or between two other objects, the first vector
will disappear.

Figure 2. Negative vector value.

By convention, Distance vectors running outward
from an object have positive values, those drawn
inward across the object will be negative.

2.2 Sides of objects

To identify sides of an object in the formula bar, a
convention of names for three pairs of opposite
sides are proposed:

Head and Tail, Left and Right, Spine and Belly,
or, respectively H, T; L, R; S, B.

For easy reading, a black dot will be shown at the
head of an object when a Vector is drawn from or

Figure 3. Identification of sides of an object.

towards it. When the head is given, only one side
of one other pair needs to be identified for all six
sides to be known. For instance, when side L in
figure 3 is identified as well as the head, all other
sides are identified. We will be free to establish
the sides of objects as we prefer, or to follow
generally accepted conventions.

Figure 4. Relations by means of sides.

Figure 4, for instance, specifies further figure 2,
and will show in the formula bar as:

Ar, Bt = (40) 2)

Here the sides are written in lower case because
they specify the relation AB. Instead of drawing a
Distance Vector by hand, it can be efficient to let
the computer choose a default Vector based on an
orthogonal system, to be corrected later. Clicking
on A first and B next would produce the Vector of
figure 1. But now the formula gives us the sides
as well:

Al, Bt, = 25 3)

We could next alter Al into Ar, and obtain the
Vector of Figure 4 with the (negative) length of
(40).

2.3 Behavior profile (1)

In formula 3) we may replace the value of 25 with
‘x’, and we would get:

A B25

A B_(40)

A B_(40)R

L

L

3

Al, Bt, = x? 4)

The question mark asks for a specification of the
constraints on x. Double clicking on it we get a
window in which we may write, for instance:

Al, Bt, = x > 10 5)

Saying in fact that the distance between the left
side of A and the right side of B in figure 4 must
be more than 10. This amounts to a statement of
the behavior of A relative to B. The window
contains the behavior profile of A. Relations of A
to other objects may be entered there as well.

2.4 Internal relations

Once the sides of an object are identified, we can
transform the object by moving opposite sides
relative to one another. In figure 3, for instance,
we can click Head and Tail, obtaining the
corresponding default Vector:

Figure 5. Relation of sides of an object

While the formula bar shows:

H, T, = 30 6)

This time the sides are written in capital letters
because they are the objects in play. If we change
the Vector value of 40 into 20, for instance, we
will see the object shrink with H moving towards
T because we have clicked H first. If we change
formula 6) and write L instead of H, the computer
knows relation LT makes no sense and will give
us:

L, R, = 12 7)

This is a general way to find out dimensions of
objects and change them.

2.4 Dominance relation

If we want to establish a dominance relation in
which A is to follow B, we must click A first and
B later to obtain the default Vector of Figure 1,
accompanied by formula 1). We next underline
the formula obtaining:

Al, Br, = 25 8)

Meaning that we want A to maintain that distance
when B is displaced or when the side to where the
Vector points is displaced. If next we displace
object A the Vector value will change (or the
other way around.) But if we displace object B,
we will see object A move as well to maintain its
position relative to B. This is typical dominance
behavior.

Suppose later in the design we return to objects A
and B, but now we click on B first, we will see
that nevertheless the Vector will point from A
towards B. Because the computer remembers B
dominates A, and we cannot move it relative to A.
Similarly, when we have a window and the wall in
which it resides in a dominance relation, we will
only get vectors from the window towards sides of
the wall. See Figure 6.

Once we underline a formula the computer will
maintain a dominance relation between the two
objects for any Distance Vector that may be drawn
or given constraints, maintaining the full behavior
of the subordinate object relative to the dominant
object. Removing the underlining in any statement
will render sub-ordinate behavior inactive.

2.5 Behavior profile (2)

Figure 6. Window in wall

Suppose we now want to make sure the window
stays within the wall. This requires a general
statement about all possible relations between A
and B. To make this, we click on A and B while
keeping the shift key down, and get:

A, B, = BP ? 9)

In which BP stands for ‘behavior profile’ and the
question mark indicates none is specified so far.
To specify, we double click on BP and get a
separate window in which A’s BP is to appear.
We may type there, for instance:

Al, Bl, = x and x > 0
Ar, Br, = x and x > 0
Ah, Bh, = x and x > 0
At, Bt, = x and x > 0

30

A

B

LL

4

We may summarize this statement with a heading:
for instance ‘inside’. Next time when we ask for
the general AB relation we will get:

A, B, = BP ‘inside’ 10)

Without a summary title, only BP will appear, and
by double clicking on it, the behavior profile
window will open. With a summary title we can
quickly see what is going on and, in a second case
of containment, the designer can simply write
‘inside’ in the general formula to make two new
objects relate in the same way. Readymade
behavior profiles under summary titles may be
available for the designer, who remains free to
edit them. For instance: by changing the zero
value in any of the four relations, the window may
stay away a certain distance from the wall’s edge.

It may be that an object A is in relation with more
than one other object. For each relation a BP can
be written. When in such a case, holding down the
shift key, we click on object A only, we get:

A, = BP 11)

And by double clicking on BP we will get the
behavior profile window of A, giving us the
specifications and summary names of all relations
A maintains in our design.

2.6 Relations between classes of objects

The database held by a CAD program yields lists
of all kinds of object classes available in the
object library. Referring to those, the designer
may call for relations between classes:

Class A, class B, = BP? 12)

And may enter sub-ordinate behavior of A by
underlining the formula, or specify the BP for
class A. In this way relations may be settled for all
high back chairs relative to all work tables and
dining tables. Or for certain kinds of windows in
certain kinds of walls. Instead of these functional
relations we may distinguish classes according to
levels of intervention [Habraken 1998] like, for
instance, partitioning following a base building
and dominating furniture, or buildings following
the site, or a curtain wall following a steel frame.

A single instance of an object may belong to
several classes and thus inherit a fully specified
behavioral profile. Having access to the individual
object’s BP, the designer can at all times edit it.

3. ALGORITHMIC ASPECTS AND BI-
DIRECTIONAL EDITING

Bi-directional editing implies freely editing of a
CAD database both deductively and inductively,
and freely analyzing and evaluating a CAD
database. In the current art, CAD application
software can analyze a database on the basis of
user specified criteria, such as square footage,
building cost, etc. To evaluate a database on the
basis of criteria and values is a manual and
iterative editing process. Our proposal implies a
structured approach towards automating such
evaluation processes.

3.1 Objects

3.1.1 Object Geometry

The geometry of an object is specified by its
morphology and topology. The morphological
attributes qualify the shape. For example a curve.
The topological attributes quantify the shape. For
example the radius of the curve.

3.1.2 Object Space

An object has concrete space, which is the space
filled by the object as a result of its geometry. It
also has abstract space, which is the space
required for it to function and the space required
for the human user. For example the object
geometry of a door is given by its height, width,
and depth. Its functional space is the space needed
for the sweep of its door leaf. Its user space may
be additional space on either side of the door to
allow access.

The total space that can be allocated to an object is
the union of its concrete and abstract space.

Functional space and user space alone can also be
parametric classes. For example a corridor can be
a functional space element. The associated user
space may be smaller and is embedded inside the
functional space.

3.1.3 Object Intersections.

In a design it may be found that the spatial relation
between objects includes both their concrete and
abstract spaces.

The Distance vectors in our proposal allow the
maintenance of abstract space and concrete space
of an object. For instance by setting a minimum

5

distance from the object’s concrete space to
another concrete space or to an abstract space.

Relations will require editing. To automate such
an evaluation requires that the geometric attributes
of the abstract space are included with the
parameters of each object. The nature of spatial
relations may be an intersection of concrete space
and another concrete space, concrete space
intersecting with abstract space, and abstract space
intersecting with abstract space.

3.2 Autonomous Object behavior

Behavior can be described as a deterministic
system with in-put, through-put, and out-put. In a
digital system these 3 phases would be: data
transfer, data analysis, and internal data transfer to
an encapsulated method. In the behavior sub-
system the function of the data analysis phase is to
determine to which encapsulated method the data
should be passed. The encapsulated method may
be an algorithm that edits the object geometry
and/or edits the 6 parameters associated with the
co-ordinates and orientation of the local origin
within the Cartesian coordinate system of the
model’s database and/or outputs data to a
selection of objects. The data analysis phase
makes the object autonomous and it seems to have
a will of its own. On the other hand, if the data
analysis phase is not included with the sub-
system, received data is executed as instructed and
object behavior is pre-determined.

3.2.1 Reactive agents

Attribute values about internal object space and
global position can be transmitted as low-level
data between objects. In that case an object
behaves as a reactive agent (Nwana 1996) that
gathers data: “pulling data,” and transmits data to
a selection of other objects: “pushing data”.
Reactive agents do not possess internal, symbolic
models of their environment. They act and
respond in a stimulus–response manner to the
present state of the environment in which they are
embedded. Objects react in basic ways to
dominance and behave as reactive agents.
Therefore dominant behavior of objects can be
coordinated and implemented with relatively
simple stimulus–response class algorithms.
Complex patterns of behavior emerge from these
interactions between objects when observed as
group.

3.3 Dominance behavior.

Relative behavior of objects can be symmetrical
or a-symmetrical. With symmetrical behavior a
transformation of object A results in
transformation of object B and vice versa. With a-
symmetrical behavior a transformation of object B
may not result in a transformation of object A, but
may induce transformation of object C. The
concept of dominance as illustrated in this paper
captures this a-symmetrical behavior. A-
symmetrical behavior was implemented in 1999
while developing new prototypes of high-level
objects for a library of parametric objects
[Langelaan 1999] for ArchiCAD [Graphisoft]. For
example, a change in the section width of a
doorframe results in a larger total width and height
of the door object, but a change in the total width
of the door object does not affect the width of the
frame but implements a change of the width of the
door leaf.

Dominance relations can be identified in different
contexts. Although not always obvious, they are
mostly conventional and therefore can be
generalized with editable Behavior Profiles.

3.3.1 Design Level Sub-systems

These are generally governed by scale and
construction sequence. [Habraken 1998].
Customary design levels are those for Urban
Design, Site Design, Building Design and Room
Design. More recently, a Fit-out design level has
emerged in commercial and residential building
[SAR 1978]. Dominance between levels is fairly
obvious from design experience.

3.3.2 Group Aspect System

Within each design level, objects with a common
aspect can be related as logical groups, such as
mechanical, structural, electrical, egress,
furnishing, storey, etc. Dominance is not obvious.

3.3.3 Class Aspect System.

This aspect system coordinates objects belonging
to different classes. Class dominance is not
obvious.

3.3.4 Custom Relationships

Design intention may lend sets of objects a
relationship with custom dominance. For instance,
object A always remains at the centre line of

6

object B. Special geometric relationships could be
specified with abstract relationship object classes.

3.4 Possible Applications

Capacity to deal in a systemic way with
dominance relations allows new ways of computer
supported editing and design development:

3.4.1 Fuzzy Choices

When the output of a logical process is discrete
the process can be automated with Boolean
algorithms. If a process encounters an array of
possibilities whose choice is not stochastic neither
objective nor decisive following iteration, but
requires weighting and averaging then the logical
process is fuzzy. At such occurrences an
automated process must be interrupted and the
question with its array of choices must be
presented in an input window on the screen. For
example questions about value sets of attributes,
proportional relationships, dominance, etc. It must
be noted that fuzzy logic reasoning algorithms
may be possible to solve some of these problems.

3.4.2 Intelligent Editing

Intelligent Editing requires methods that maintain
a geometric or positional relationship between
discreet objects. The relationship can be inherited
from the parent class or custom specified. The
value of the relationship can be discrete “A on the
centerline of B” or may be fuzzy “A near B”
where ‘near’ has the va lue se t ,
near={min(n),max(m)}. For example, when the
geometry or position of a wall object is edited, the
related doors and windows remain embedded in
the wall. Or if a kitchen cabinet is placed on a
floor plan it will automatically position itself
against the nearest wall.

3.4.3 Bi-directional Editing

Bi-directional editing of an object occurs when
attributes that have a reciprocal relationship can
be freely edited, and the values of the related
attributes are automatically updated and
implemented.

Moreover, in sets of objects that have a reciprocal
relationship, any object can be freely edited and
attribute values of related objects are
automatically updated and implemented.

Finally, criteria can be selected for analyzing the
model database; the result can be edited and

attribute values of related objects in the database
are automatically updated and implemented.

4. CONCLUSIONS

The proposed instrument performs in a uniform
way a number of functions already available like
certain groupings, containment, shrinking or
stretching and translation of objects. In addition it
adds important new aspects having to do with
relational behavior including dominance.

In design, basic relations are rather simple, but
relational chains can become extremely complex.
With the proposed instrument coherent control of
this complexity may become possible, leading to
greater efficiency and smoother coordination
among parties in control of different sub-systems.

The instrument will render the computer
relationally intelligent and capable of tracing
strings of adjustment in case of local design
change to check on possible conflicts between
sub-systems; list object space violations; evaluate
dominance of listed objects and generally monitor
and help control dynamic relations among objects.

Because relational data are connected by an
instance-to-instance chain, control of complex
configurations can take place without global
checking of relational data.

With the help of this instrument, we may learn
more about behavior of complex systemic
organizations by exercise and research. This, in
turn, may enhance our theorizing on form
behavior in general and building design in
particular, and may lead to automated editing of a
virtual building model.

5. REFERENCES

[Habraken 1998] N.J. Habraken, The Structure of
the Ordinary, MIT Press, 1998

[Nwana 1996] H.S. Nwana, Software Agents: An
Overview, Knowledge Engineering Review, Vol.
11, No 3, Cambridge University Press, 1996

[Langelaan 1999] J .W.R. Langelaan,
MasterLibrary 7.0, unreleased prototype,
Langelaan Architect, 1999

[Graphisoft] ArchiCAD, Graphisoft R&D Rt.,
Budapest, 1982-2003

[SAR 1978] Stichting Architecten Research,
Levels and Tools, in: Open House International,
vol.3, no.4

